PYTHON
FUNCTION
CLASS XI|

FUNCTION

A GROUP OF STATEMENTS WITHIN A PROGRAM
THAT PERFORM AS SPECIFIC TASK.
USUALLY ONE TASK OF A LARGE PROGRAM.
FUNCTIONS CAN BE EXECUTED IN ORDER TO
PERFORM OVERALL PROGRAM TASK
KNOWN AS DIVIDE AND CONQUER APPROACH

FUNCTION DEFINITION

® A function is a hamed sequence of statement(s) that
performs a computation. It contains

@ line of code(s) that are executed sequentially from top
to bottom by Python interpreter.

® They are the most important building blocks for any
software in Python.

TYPES

Functions can be categorized as -
i. Modules

ii. Built in

iii. User Defined

MODULE

@A module is a file containing Python definitions
(i.e. functions) and statements.

@Standard library of Python is extended as
module(s) to a programmer. Definitions from the
module can be used within the code of a
program. To use these modules in the program, a
programmer needs to import the module.

HOW TO IMPORT MODULE?

@There are many ways to import a module in
your program, the one's which you should
know are:

@lmport
®From

Import
@ It is simplest and most common way to use modules in our code.

@ Its syntax is:

® import modulename1 [,modulename2, ---------]
® Example

® >>> import math

@ To use/ access/invoke a function, you will specify the module
name and name of the

@ function- separated by dot (.). This format is also known as dot
notation.

® Example
® >>> value= math.sqrt (25) # dot notation

From Statement

@ It is used to get a specific function in the code instead of the
complete module file. If we know beforehand which function(s),
we will be needing, then we may use from. For modules having
large no. of functions, it is recommended to use from instead of
import.

Its syntax is:

>>> from modulename import functionname [, functionname.....]

>>>from modulename import * (Import everything from the file)

Example

® >>> from math import sqrt

@ value = sqgrt (25)

tloor(x)

It returns the largest
integer not greater than x,
where x is a numeric

EXPTresSIoH.

math.floor(-45.17)
-46.0
math.floor(100.12)
100.0
math.floor(100.72)
100.0

fabs(x) It returns the absolute math.fabs{-45.17)
value of x, where x is a 45.17
numeric value. .
¢ math.fabs(100.12)
10012
math.tabs(100.72)
10072
exp(x) It returns exponential of x: math.exp(-45.17)

e’ where x is a nuumeric

expression.

2.41500621326e-20

math.exp(100.12)
3.03084361407et+43

math.exp(100.72)
5.52255713025e+43

Some functions from random module are:

Name of the function

Description

Example

randorn ()

It returns a random float =,

such that

0 << »=<<1

==>random.random ()
0.281954791393
==random.randon ()

0.309090465205

randint (a, b)

It returns a int x between a
& b such that

a=x=b

>>=> random.randint (1,10)
5

=== random.randint (-
2,20)

-1

uniform (a,b)

It returns a flo atiﬂg 1_-:-Di11t

number x, such that

a==x<=<750b

>>>random.uniform (5,
10)

5.52615217015

HOW TO CREATE PYTHON MODULE ¢

® Python modules are .py files that consist of Python code.
Any Python file can be referenced as a module.

® Some modules are available through the Python Standard
Library and are therefore installed with your Python
installation. Others can be installed with Python’s
package manager pip. Additionally, you can create your
own Python modules since modules are comprised of
Python .py files.

® Writing a module is just like writing any other Python file.
Modules can contain definitions of functions, classes, and
variables that can then be utilized in other Python programs.

To begin, we’ll create a function that prints Hello, World!:

hello.py
Define a function
def world():
print("Hello, World!")

If we run the program on the command line with python hello.py
nothing will happen since we have not told the program to do
anything.

@ Let’s create a second file in the same directory called
main_program.py so that we can import the module we just
created, and then call the function. This file needs to be in
the same directory so that Python knows where to find the

module since it’s not a built-in module.
main_program.py

Import hello module
import hello

Call function
hello.world()

or from hello import world

hello.py

Define a function
deft world():
print{"Hello, korld!™)

Define a wvariable

shark = "Sammy”

Mext, we'll call the variable in a print{) function within our main_program.py file:

main_program.py

Import hello module

import hello

Call function

hello.world()

Print variable
print{hello.shark}

ACCESSING MODULES FROM ANOTHER
DIRECTORY

MODULES MAY BE USEFUL FOR MORE THAN ON
PROGRAMMING PROJECT, AND IN THAT CASE IT
MAKES LESS SENSE TO KEEP A MODULE IN A
PARTICULAR DIRECTORY THAT’S TIED TO A
SPECIFIC PROJECT.

APPENDING PATHS

@ To append the path of a module to another programming file, you’ll start by importing
the sys module alongside any other modules you wish to use in your main program file.

@ The sys module is part of the Python Standard Library and provides system-specific
parameters and functions that you can use in your program to set the path of the
module you wish to implement.

@ For example, let’s say we moved the hello.py file and it is now on the path
/usr/sammy/ while the main_program.py file is in another directory.

@ In our main_program.py file, we can still import the hello module by importing the sys
module and then appending /usr/sammy/ to the path that Python checks for files.

main_program.py
@ import sys
@ sys.path.append('/user/sammy/’)
@ import hello

@ As long as you correctly set the path for the hello.py
file, you’ll be able to run the main_program.py file
without any errors and receive the same output as above
when hello.py was in the same directory.

Built in Function

@Built in functions are the function(s) that
are built into Python and can be accessed
by a programmer.

@These are always available and for using
them, we don’t have to import any
module (file).

MName Description Example
abs (x) It returns distance between | >>>abs(-45)
» and zero, where x is a 45
HUMIETIC EXPTESSIOT.
>=>abs(1191.)
119
max(X, ¥V, Z, ...) It returns the largest of its =>>=>>max(30, 100, 1000)
arguments: where x, v and 1000
Z are nuineric
] i =>>>max(-80, -20, -10)
wariable / expression.
-10
min(>, V. =,) It returns the smallest of its | >>> min(S0, 100, 1000)

arguments; where x, v, and
7 are nuimeric

wariable / expression.

80
=>>> min(-80, -20, -10)
-80

cmpi(>, v)

It returns the sign of the
difference of two numbers:
lifx <wv, 0if x == v, or1l
it = = v, where x and y are
rnumeric variable/expressior.

=>=>=cmp (S50, 100)
-1

>==cmp (180, 100)
1

divmmad (=7]

Eaeturns oth, guotient amed
remainder by divisioa
thronnsl a taple, whemn x« is
diwvided by 3 wilhwere x & v
are variable f expression.

=== divooeed (125}
(2.4)

e divmwod (27, LS)
(L0, L 0000y

l=m (=)

FPeturn thee lemgtls (e
mnummber of itemes) of anm
object. The argumeert mays
be a sequernvce (sirimg, haple
or list) or a mapepedrnge

(dictHormary -

= A= [L.2,3]
====lem (a)

3

e o= "Flella”
=== lem ()

=

ramgxe (start, stop]. step]d

Thi= is a versatle fumactiom
to create lists contaimite;
arithmmnmetic progressiomns_ It
is mueost offtemn nsed ine for
lowop=_ The argumments muaast
be plaim imtegers. If thve stope
arguameetit is omiatited, it
defanlts to 1 IF thwe sfard
argummeetit is omuitbed, It
defanlts to 0. The full form
retnrms a Hst of plaim
imtespers [start, start &+ step,
start + 2 * step,] - If sfep is
Prositve, the last elennent is
the largest start &= 1 * step
less thuamn stogpr; if stepr is
megative, the last elennemnt
is thve smallest start + 4 ™
step sreater thao stopr. siopr
muast not be =zero (or =lse
Salue Error is raissd).

=Tl raTenes| L)

[, 1, =2 = & 5, 6, 7, 5, 9]
== ramgse L, 11}

[L.2 3. 4 5, 6, 7, 5 9, 10]
== pareee(0, 30, 5

[@, 5, 10, 15, 20, 25]

== panmeeed 0, 10, 3}

[, F, 5, 9]

Fmem rarmeee (0, 10, -1}

[D.r -1, -2, 3. &, -5, -6, -T.
_9]

=T rargge 00

]

I parepes(. O
]

round(x [, n])

[t returns tloat x rounded
to n digits from the
decimal point, where x and

1 are numeric E.TPI'ESS!.GHS.

It nis not provided then x

is rounded to 0 decimal

digits.

>>>round(80.23456, 2)
80.23
>>>round(-100.000056, 3)
-100.0

>>> round (80.23456)
80.0

Apart from these tunctions, vou have already seen the use of the following functions:

bool (), chr (), tloat (), int (), long (), str (), tvpe (), id (), tuple ()

USER DEFINED FUNCTIONS

@ To define a function keyword def is used

@After the keyword comes an identifier i.e. name
of the function, followed by parenthesized list of
parameters and the colon which ends up the line.

@Next follows the block of statement(s) that are
the part of function.

EXAMPLE

def sayHello (): # Header

print “Hello World!”
Example-
def area (radius):
a = 3.14*radius **2
return a
Function call
>>> print area (5)

SCOPE OF VARIABLES

The part of the program where a variable can be used is
known as Scope of variable

Two types of scopes
Global Scope

Local Scope

GLOBAL SCOPE

. With global scope, variable can be used
anywhere in the program
eg.
x=50
def test ():
print(“inside test x Is “, X)
print(“value of x Is “, x)
Output:
Inside test x is 50
value of x is 50

LOCAL SCOPE

With local scope, variable can be used only within the function /
block that it is created .
Eg:
X=50
def test ():
y =20
print(‘'value of xis’, X, "y is’,vy)

print(‘'value of xis’, X, "y is “,y)
On executing the code we will get
Value of xis 50y is 20

The next print statement will produce an error, because the variable y is not
accessible outside the def()

MORE ON SCOPE OF
VARIABLES

To access global variable inside the function prefix keyword global with
the variable
EQ:

x=50
def test ():

global x =5

y =2

print(‘value of x & y inside the function are ‘, x, y)
Print(‘value of x outside functionis * *,)

This code will produce following output:
Value of x & y inside the function are 5 2
Value of x outside the functionis 5

DEFAULT ARGUMENT

A default argument is a function parameter that has a default
value provided to it. If the user does not supply a value for this
parameter, the default value will be used. If the user does supply a
value for the default parameter, the user-supplied value is used.

Eg.
def greet (message, times=1):
print message * times

>>> greet (‘Welcome’) # function call with one argument value
>>> greet (‘Hello’, 2) # function call with both the argument values.

Output:

Welcome
HelloHello

QUESTION BASED ON FUNCTIONS

® What is the difference between methods, functions & user
defined functions.

® Open help for math module
i. How many functions are there in the module?

ii. Describe how square root of a value may be calculated
without using a math module

i1i. What are the two data constants available in math module.

@ Create a python module to find the sum and product of digits (separately) and
imports in another program.

@ Create a python function to find the a year is leap year of not a leap year
® What is local and global variable? Is global is keyword in python?
@ Create a python module to find pow(x,n) and import in another program

® \é\/r}te la function roll_D (), that takes 2 parameters- the no. of sides (with
efault

value 6) of a dice, and the number of dice to roll-and generate random roll values
for each dice rolled. Print out each roll and then return one string “That’s all”.
Example roll_D (6, 3)

® 4

® 1

® 6

